Stereodynamics of Cycloheptanone Radical Anion: Direct Observation of the Asymmetric Twist-Chair Conformer in a Seven-Membered Ring ${ }^{\dagger}$

R. Borghi, \ddagger M. A. Cremonini, L. Lunazzi,* and G. Placucci*
Department of Organic Chemistry "A. Mangini" University of Bologna, Risorgimento 4, Bologna 40136, Italy
Received July 5, 1994

The conformation of cycloheptanone, $\mathbf{1}$, has been analyzed by many authors, in particular by Allinger and co-workers, by using molecular mechanics calculations. ${ }^{1,2}$ The conclusion was reached that at room temperature cycloheptanone populates a set of four twist-chair (TC) conformers as shown below:

In particular the conformers TC_{1} (which exhibits a C_{2} axis of symmetry) and TC_{2} (which does not contain any element of symmetry) were predicted to be the most stable, the latter having the lower energy (Table 1). X-ray investigations of two molecules with substituted seven-membered rings ${ }^{3-5}$ show indeed that the seven-membered ring adopts a twist-chair conformation. However, the structures deduced by this analysis appear to have a local C_{2} symmetry axis, thus corresponding to the TC_{1} rather than the TC_{2} conformation. This is at variance with the results of the theoretical calculations; however, these derivatives were sufficiently different from cycloheptanone to account for a different conformation within the twist-chair family. ORD investigations ${ }^{6}$ on substituted cycloheptanones suggested that both TC_{1} and TC_{2} were populated, the former, however, appearing the most stable, although the authors stressed that the inversion of the stability could well be due to the effect of the substituents. The vibrational spectra of cycloheptanone were also satisfactorily analyzed on the basis of a set of twist-chair structures, the symmetric TC_{1} conformer being considered again as the most stable one. ${ }^{7}$ Lowtemperature NMR investigations on cycloheptanone itself ${ }^{8}$ were inconclusive since the barriers involved in the pseudorotation process ${ }^{9,10}$ are too small to allow the NMR spectrum of the individual conformers to be directly observed, even at -170 ${ }^{\circ} \mathrm{C}$ (the ΔG^{*} was found ${ }^{8}$ to be certainly lower than 5 kcal mol^{-1}). Since substitution with geminal dimethyl groups enhances the interconversion barriers of rings, ${ }^{11}$ the $3,3,6,6-$ tetramethylcycloheptanone (which has the same symmetry as cycloheptanone) displays at $-115^{\circ} \mathrm{C}$ a NMR spectrum with two signals for the two pairs of methyl groups (and also

[^0]Table 1. Relative Energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) of the Four Possible Twist-Chair (TC) Conformers of Cycloheptanone (1) and of Its Radical Anion ($\mathbf{1}^{-}$) Computed with Various MM Versions

compd	version	TC_{1}	TC_{2}	TC_{3}	TC_{4}
$\mathbf{1}$	MM^{a}	0.25	0.00	1.80	1.62
$\mathbf{1}$	MM3 b	0.29	0.00	1.12	1.97
$\mathbf{1}$	MMX c	0.41	0.00	1.23	1.97
$\mathbf{1}{ }^{--}$	MMX c	0.67	0.00	0.69	1.33

${ }^{a}$ Reference 1a. ${ }^{b}$ Reference 2. ${ }^{c}$ This work; see footnote 15.
nonequivalent signals for the γ-methylene hydrogens). ${ }^{12} \mathrm{~A}$ barrier for the process exchanging the two pairs of methyl groups could then be measured ($8.5 \mathrm{kcal} \mathrm{mol}^{-1}$). ${ }^{12}$ On the basis of their low-temperature NMR studies on asymmetrically substituted cycloheptanones, ${ }^{8}$ St-Jacques and co-workers interpreted this finding in terms of an asymmetric TC_{2} form having four different methyl groups. Such an asymmetry, is however, NMR invisible, due to a rapid partial pseudorotation process which creates a dynamic C_{2} symmetry axis. The barrier for this process being too low, only the highest barrier (i.e., 8.5 kcal mol^{-1}) which renders equivalent all four methyl groups could thus be determined. ${ }^{13}$ In a subsequent study, however, the same group suggested ${ }^{14}$ that the 3 -tert-butylcycloheptanone adopts the TC_{1} rather than the TC_{2} conformation. Our own molecular mechanics calculations ${ }^{15}$ indicate, on the contrary, that also in this case the TC_{2} conformation (entry 4 of ref 14) should be more stable (by $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$) than TC_{1} (entry 9 of ref 14).

Clearly none of the experiments reported so far has yet been able to prove unambiguously, by direct observation, the existence of the predicted asymmetric TC_{2} conformer, since complete nonequivalence of the four hydrogens bonded to the carbons in the α (or β or γ) positions has never been detected (nor has the nonequivalence of four substituents in these same positions).

We report here the direct observation of such an asymmetric conformer in the case of cycloheptanone radical anion ($\mathbf{1}^{--}$) in solution. ${ }^{16}$ Although the radical anion obviously differs from the neutral molecule because of the additional unpaired electron on the first antibonding orbital, the conformational preferences ought to be quite similar. This assumption was verified by MM calculations ${ }^{15}$ performed on both the molecule and the radical anion: the conformations corresponding to the four relative minima and the trend of the computed energy differences were found to be the same (Table 1). On the basis of the calculated energy difference ($0.67 \mathrm{kcal} \mathrm{mol}^{-1}$) the TC_{2} conformer of $\mathbf{1}^{--}$ is expected to be essentially the only populated form ($\sim 90 \%$, if a negligible ΔS° value is assumed) at temperatures equal to or lower than $-125^{\circ} \mathrm{C}$. Indeed the ESR spectrum of $1^{\circ-}$ at this temperature (Figure 1) corresponds to that of a unique asymmetric structure having different hfs constants for the four hydrogens bonded to the α-carbons (i.e., $\mathrm{C}-2, \mathrm{C}-7$). The a_{H} values (Table 2) are $31.5 \mathrm{G}(1 \mathrm{H}), 0 . \mathrm{G}(\mathrm{IH})$, and $25 . \mathrm{G}(2 \mathrm{H})$: the apparent equivalence of two hydrogens with a 25 G splitting is obviously due to an accidental near degeneracy, within the 2 G line width. When the temperature is raised, a line-broadening

[^1]

Figure 1. Experimental ESR spectra (left) of cycloheptanone radical anion ($1^{1^{-}}$) at various temperatures. On the right are reported the simulated spectra with the rate constants (k_{1} and k_{2} in s^{-1}) corresponding to the two exchange processes (see text). Below $-110^{\circ} \mathrm{C}$ the computed spectrum is, in practice, insensitive to the value of k_{2}, above $-70^{\circ} \mathrm{C}$ it is insensitive to that of k_{1}, and above $-25^{\circ} \mathrm{C}$ it is insensitive to both.

Table 2. Hfs Constants (a_{H} in Gauss) of Radical 1-- at $-125^{\circ} \mathrm{C}^{a}$

	2 a	2 b	7 a	7 b
a_{H} (exptl)	31.5	25	25	0
a_{H} (computed)	31	24	27	0

${ }^{a}$ The computed values were obtained using the θ angles $\left(26^{\circ}, 142^{\circ}\right.$, $-32^{\circ}, 85^{\circ}$, see text) of the TC_{2} conformation of Figure 2.
exchange process occurs whereby the hydrogen having $a_{H}=$ 31.5 G exchanges with that having $a_{\mathrm{H}}=0 \mathrm{G}$, eventually yielding an averaged a_{H} value equal to $14.5 \mathrm{G}(2 \mathrm{H})$. The same exchange must also be experienced by the other pair of hydrogens, but, their splittings being nearly equal, the corresponding linebroadening effect cannot be observed. The average a_{H} value measured for the first pair of hydrogens is slightly smaller than expected (it should have been 15.7 G). This is due to a decrease of the absolute values of the splittings with the increasing temperature as shown by the fact that also the other pair of hydrogens with $a_{\mathrm{H}}=25 \mathrm{G}$ (at $-125^{\circ} \mathrm{C}$) have $a_{\mathrm{H}}=24 \mathrm{G}$ at $-95^{\circ} \mathrm{C}$. Line shape simulations ${ }^{17}$ yield the rate constants, hence the free energies of activation ($\Delta G_{1} *=2.7 \pm 0.25 \mathrm{kcal} \mathrm{mol}^{-1}$, average of four measurements ${ }^{18}$ in the range -115 to $-80^{\circ} \mathrm{C}$) for this process (see, for instance, Figure 1 at $-114{ }^{\circ} \mathrm{C}$). Conceivably this motion corresponds to the partial pseudorotation pathway with lower energy that had escaped NMR detection. ${ }^{8,12}$ Such a stereomutation makes C-2 dynamically equivalent to $\mathrm{C}-7$, leading to a situation where the rapidly equilibrating enantiomeric forms possess an "average symmetry equivalent to that of TC_{1} which contains a C_{2} symmetry axis through the carbonyl group". ${ }^{8}$ At even higher temperatures the pseudorotation process is completed, making equivalent, with an average a_{H} value of $19 \mathrm{G}(4 \mathrm{H})$, the four hydrogens bonded to $\mathrm{C}-2$ and $\mathrm{C}-7$ (Figure 1 at $-20^{\circ} \mathrm{C}$). The corresponding free energy of activation, obtained by line shape analysis (see, for instance, Figure 1 at $-65^{\circ} \mathrm{C}$), is $\Delta G_{2}{ }^{*}=4.2_{5} \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}$
(17) A computer program which allows for the exchange among four sites has been purposely prepared, using the Heinzer formalism (Heinzer, J. Mol. Phys. 1971, 22, 167).
(18) Within experimental uncertainty the ΔG^{*} values were found to be independent of temperature, as is often observed in conformational equilibrium: as a consequence, the values for ΔS^{*} are essentially negligible. Within the quoted errors the ΔG^{*} values could thus be averaged and regarded as equal to ΔH^{*}.

Figure 2. Picture of the MM computed asymmetric twist-chair conformation $\left(\mathrm{TC}_{2}\right)$ of cycloheptanone radical amion $\left(1^{--}\right)$, which agrees with the experimental a_{H} values of the ESR spectrum (see text). The $\mathrm{C}=\mathrm{O}$ moiety has been represented in black.
(average of five measurements ${ }^{18}$ in the range -100 to $-35^{\circ} \mathrm{C}$). This value is within the upper limit ($5 \mathrm{kcal} \mathrm{mol}^{-1}$) established ${ }^{8}$ for 1 and is also remarkably close to the estimate of the maximum barrier ($\left.3.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{7}$ required to complete the pseudorotation pathway, once more suggesting an analogous conformational behavior for cycloheptanone and its radical anion.

Information on the geometry, as well as assignment of the a_{H} values to the sites of the TC_{2} conformation, can be obtained by means of the well-known McConnell equation. ${ }^{19,20}$ For hydrogens occupying a β-position with respect to the radical center this relationship takes the form $a_{\mathrm{H}}=A+B \cos ^{2} \theta$, where A is small ${ }^{21}$ and can be neglected, ${ }^{22} B$ is a constant value for a homogeneous class of radicals (here aliphatic ketyls), and θ is the dihedral angle between the appropriate $\mathrm{C}-\mathrm{H}$ bond and the direction of the p_{z} orbital bearing the unpaired electron. The four θ values computed for the TC_{2} conformation corresponding to the minimum energy of 1^{--}do not reproduce the experimental a_{H} values very well, but a minor modification of this geometry (so small indeed that its energy is only $0.3 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than that of the minimum) brings about quite a satisfactory agreement with the experiment. ${ }^{23}$ The four θ values computed for the latter TC_{2} structure (Figure 2) are $26^{\circ}, 142^{\circ},-32^{\circ}$, and 85° for the two isoclinal ($2 \mathrm{a}, 2 \mathrm{~b}$), the pseudoaxial (7a), and the pseudoequatorial (7b) hydrogens, respectively. When inserted in the McConnell equation they yield a_{H} splittings matching (Table 2) the experimental values, with B equal to 38 G. ${ }^{24}$ This assignment also agrees with the previously discussed stereomutation pathway since the low-energy process ($2.7 \mathrm{kcal} \mathrm{mol}^{-1}$) exchanges 2 a with 7 b and 2 b with 7 a , leading to a rapid equilibrium between the enantiomers which simulates an average structure where $\mathrm{C}-2$ and C-7 are equivalent (dynamic C_{2} symmetry axis). The higher energy process ($4.25 \mathrm{kcal} \mathrm{mol}^{-1}$) subsequently exchanges the pair $2 \mathrm{a}=7 \mathrm{~b}$ with the pair $2 \mathrm{~b}=$ 7a, eventually leading to a full equivalence of the four H atoms.

[^2]
[^0]: ${ }^{\dagger}$ Dedicated to Dr. K. U. Ingold on the occasion of his 65 th birthday.
 \ddagger In partial fulfillment of the requirements for the Ph.D. degree in chemical sciences.
 (1) (a) Allinger, N. L.; Trible, M. T.; Miller, M. A. Tetrahedron 1972, 28, 1173. (b) Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph Series 177; Caserio, M. C., Ed; American Chemical Society: Washington, D.C., 1982 and references quoted therein.
 (2) Allinger, N. L.; Chen, K.; Rahaman, M.; Pathiaseril, A. J. Am. Chem. Soc. 1991, I13, 4505.
 (3) Groth, P. Acta Chem. Scand. 1964, 18, 1801.
 (4) Hendrickson, J. B. J. Am. Chem. Soc. 1967, 89, 7036.
 (5) Birnbaum, G. I.; Buchanan, G. W.; Morin, F. G. J. Am. Chem. Soc. 1977, 99, 6652.
 (6) (a) Kirk, D. N. J. Chem. Soc., Perkin Trans. 1 1977, 2122. (b) Lightner, D. A.; Docks, E. L. Tetrahedron 1979, 35, 713.
 (7) Bocian, D. F.; Strauss, H. L. J. Chem. Phys.1977, 67, 1071.
 (8) St-Jacques, M.; Vaziri, C.; Frenette, D. A.; Goursot, A.; Fliszar, S. J. Am. Chem. Soc. 1976, 98, 5759.
 (9) Bocian, D. F.; Pickett, H. M.; Rounds, T. C.; Strauss, H. L. J. Am. Chem. Soc. 1975, 97, 687.
 (10) Flapper, W. M. J.; Romers, C. Tetrahedron 1975, 31, 1705.
 (11) Anet, F. A. L.; Anet, R. in Dynamic NMR Spectroscopy; Jackman, L. M., Cotton, F. A., Eds.; Academic Press: New York, 1975; Chapter 14, pp 562, 567 and references quoted therein.

[^1]: (12) (a) Borgen, G. Acta Chem. Scand. 1972, 26, 1739. (b) Borgen,G.; Dale, J. Acta Chem. Scand. 1972, 26, 3593.
 (13) The original interpretation ${ }^{12 b}$ of Borgen and Dale was essentially analogous, but they had assumed that the TC_{3} conformer was the most populated, an assumption which is apparently at variance with the theoretical calculations, at least for the unsubstituted cycloheptanone.
 (14) Ayotte, L.; St-Amour, R.; St-Jacques, M.; Hull, W. E. Tetrahedron Lett. 1980, 21, 793.
 (15) The MMX force field, as implemented in the program PC Model, Serena Software, Bloomington, IN, was employed. (See also: Gajewski, J. J.; Gilbert, K. K.; McKelvey, J. In Advances in Molecular Modelling; JAI Press: Greenwich, 1990; Vol. 2.)
 (16) The radical anion ($\mathbf{1}^{-}$) was obtained by in situ continuous photolysis (in steady state conditions) of a cyclopropane solution of cycloheptanol in which potassium had been dissolved (see also ref 26). Shutting off the light caused the instantaneous disappearance of the ESR spectrum.

[^2]: (19) Heller, C.; McConnell, H. M. J. Chem. Phys. 1960, 32, 1535.
 (20) Although a more complete equation should in principle be used (see: Guerra, M. J. Am. Chem. Soc. 1992, 114, 2077), this approximation is still adequate for the present case.
 (21) (a) Griller, D.; Ingold, K. U. J. Am. Chem. Soc. 1974, 76, 6715. (b) Gilbert, B.; Norman, R. O. C.; Trenwith, M. J. Chem. Soc., Perkin Trans. 2 1974, 1033. (c) Scaiano, J.; Ingold, K. U. J. Phys. Chem. 1976, 80, 275.
 (22) (a) Krusic, P. J.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 846. (b) Forrest, D.; Ingold, K. U.; Barton, D. H. R. J. Phys. Chem. 1977, 81, 915.
 (23) The structure has been modified by flattening slightly the $\mathrm{H}-7 \mathrm{~b}, \mathrm{C}$ $7, \mathrm{C}-1, \mathrm{O}^{-}$dihedral angle (-5° rather than $-25^{\circ} \mathrm{C}$). This modification changes the original values of the θ angles $\left(1^{\circ}, 117^{\circ},-51^{\circ}, 65^{\circ}\right)$ to the ones reported in the text and in Table 2 for the structure of Figure 2. Such a small structural difference could well be due to minor modifications induced by the solvent on the very flexible seven-membered ring (the calculations in fact refer to the case of an isolated molecule or radical).
 (24) This value is in the range expected for the radical anion of an aliphatic ketone. An independent estimate of B can in fact be obtained using an appropriate model where a methyl bonded to the radical center is assumed to be in the free rotation limit. In this situation ${ }^{25}$ the McConnell equation is reduced to $a_{\mathrm{H}}=B / 2$. For the present case the model of choice is the acetone radical anion, and from its a_{H} value ($16.9 \mathrm{G}^{26}$) the term B turns out to be 34 G , in close proximity to the value (38 G) required to match the experimental splittings of the TC_{2} conformation of Figure 2.
 (25) (a) Kochi, J. K.; Krusic, P. J. Spec. Publ.-Chem. Soc. 1970, 24, 147. (b) Cremonini, M. A.; Lunazzi, L.; Placucci, G.; Okazaki, R.; Yamamoto, G. J. Am. Chem. Soc. 1990, M12, 2915 and references quoted therein.
 (26) Davies, A. G.; Neville, A. G. J. Chem. Soc., Perkin Trans. 2 1992, 163.

